PCA
给定一组二维数据,每列十一组样本,共45个样本点
-6.7644914e-01 -6.3089308e-01 -4.8915202e-01 ...
-4.4722050e-01 -7.4778067e-01 -3.9074344e-01 ...
可以表示为如下形式:
本例子中的的x(i)为2维向量,整个数据集X为2*m的矩阵,矩阵的每一列代表一个数据,该矩阵的转置X' 为一个m*2的矩阵:
假设如上数据为归一化均值后的数据(注意这里省略了方差归一化),则数据的协方差矩阵Σ为 1/m(X*X'),Σ为一个2*2的矩阵:
对该对称矩阵对角线化:
这是对于2维情况,若对于n维,会得到一组n维的新基:
,且U的转置:
原数据在U上的投影为用UT*X表示即可:
对于二维数据,UT为2*2的矩阵,UT*X会得到2*m的新矩阵,即原数据在新基下的表示XROT,原来的数据映射到这组新基上,便得到可一组在各个维度上不相关的数据,取k<n,把数据映射到上,便完成的降维过程,下图为XROT:
对基变换后的数据还可以进行还原,比如得到了原始数据 的低维“压缩”表征量 , 反过来,如果给定 ,我们应如何还原原始数据 呢? 的基为要转换回来,只需 即可。进一步,我们把 看作将 的最后 个元素被置0所得的近似表示,因此如果给定 ,可以通过在其末尾添加 个0来得到对 的近似,最后,左乘 便可近似还原出原数据 。具体来说,计算如下:
下图为还原后的数据:
下面来看白化,白化就是先对数据进行基变换,但是并不进行降维,且对变化后的数据,每一个维度上都除以其标准差,来达到归一化均值方差的目的。另外值得一提的一段话是:
感觉除了层数和每层隐节点的个数,也没啥好调的。其它参数,近两年论文基本都用同样的参数设定:迭代几十到几百epoch。sgd,mini batch size从几十到几百皆可。步长0.1,可手动收缩,weight decay取0.005,momentum取0.9。dropout加relu。weight用高斯分布初始化,bias全初始化为0。最后记得输入特征和预测目标都做好归一化。做完这些你的神经网络就应该跑出基本靠谱的结果,否则反省一下自己的人品。
对于ZCA,直接在PCAwhite 的基础上左成特征矩阵U即可,
matlab代码:
close all%%================================================================%% Step 0: Load data% We have provided the code to load data from pcaData.txt into x.% x is a 2 * 45 matrix, where the kth column x(:,k) corresponds to% the kth data point.Here we provide the code to load natural image data into x.% You do not need to change the code below.x = load('pcaData.txt','-ascii');figure(1);scatter(x(1, :), x(2, :));title('Raw data');%%================================================================%% Step 1a: Implement PCA to obtain U % Implement PCA to obtain the rotation matrix U, which is the eigenbasis% sigma. % -------------------- YOUR CODE HERE -------------------- u = zeros(size(x, 1)); % You need to compute this[n m] = size(x);p = mean(x,2);%按行求均值,p为一个2维列向量%x = x-repmat(p,1,m);%预处理,均值为0sigma = (1.0/m)*x*x';%协方差矩阵[u s v] = svd(sigma);%奇异值分解得到特征值与特征向量% -------------------------------------------------------- hold onplot([0 u(1,1)], [0 u(2,1)]);%画第一条线plot([0 u(1,2)], [0 u(2,2)]);%第二条线scatter(x(1, :), x(2, :));hold off%%================================================================%% Step 1b: Compute xRot, the projection on to the eigenbasis% Now, compute xRot by projecting the data on to the basis defined% by U. Visualize the points by performing a scatter plot.% -------------------- YOUR CODE HERE -------------------- xRot = zeros(size(x)); % 初始化一个基变换后的数据xRot = u'*x; %做基变换% -------------------------------------------------------- % Visualise the covariance matrix. You should see a line across the% diagonal against a blue background.figure(2);scatter(xRot(1, :), xRot(2, :));title('xRot');%%================================================================%% Step 2: Reduce the number of dimensions from 2 to 1. % Compute xRot again (this time projecting to 1 dimension).% Then, compute xHat by projecting the xRot back onto the original axes % to see the effect of dimension reduction% 用投影后的数据还原原始数据 k = 1; % Use k = 1 and project the data onto the first eigenbasisxHat = zeros(size(x)); % 还原原始数据%[u(:,1),zeros(n,1)]'*x 代表原数据在新基上的前K维的投影,之后的维度为0%对降维后的数据进行还原:u * xRot = Xhat,Xhat为还原后的数据xHat = u*([u(:,1),zeros(n,1)]'*x);%n代表数据的维度% -------------------------------------------------------- figure(3);scatter(xHat(1, :), xHat(2, :));title('xHat');%%================================================================%% Step 3: PCA Whitening% Complute xPCAWhite and plot the results.epsilon = 1e-5;% -------------------- YOUR CODE HERE -------------------- xPCAWhite = zeros(size(x)); % You need to compute this% s为对角阵,diag(s)会返回s主对角线元素组成的列向量% diag(1./sqrt(diag(s)+epsilon))会返回一个对角阵,% 对角线元素为 -> 1./sqrt(diag(s)+epsilon% 变换后的数据为 : Xrot = u'*x%这样做对应于Xrot的数据再每个维度除以其标准差xPCAWhite = diag(1./sqrt(diag(s)+epsilon))*u'*x;% -------------------------------------------------------- figure(4);scatter(xPCAWhite(1, :), xPCAWhite(2, :));title('xPCAWhite');%%================================================================%% Step 3: ZCA Whitening% Complute xZCAWhite and plot the results.% -------------------- YOUR CODE HERE -------------------- xZCAWhite = zeros(size(x)); % You need to compute thisxZCAWhite = u*diag(1./sqrt(diag(s)+epsilon))*u'*x;% -------------------------------------------------------- figure(5);scatter(xZCAWhite(1, :), xZCAWhite(2, :));title('xZCAWhite');%% Congratulations! When you have reached this point, you are done!% You can now move onto the next PCA exercise. :)
PCA与Whitening与ZCA的一个小实验:参考自
%%================================================================%% Step 0a: 加载数据% 随机采样10000张图片放入到矩阵x里.% x 是一个 144 * 10000 的矩阵,该矩阵的第 k列 x(:, k) 对应第k张图片 x = sampleIMAGESRAW();figure('name','Raw images');randsel = randi(size(x,2),200,1); % A random selection of samples for visualizationdisplay_network(x(:,randsel)); %%================================================================%% Step 0b: 0-均值(Zero-mean)这些数据 (按行)% You can make use of the mean and repmat/bsxfun functions.[n m] = size(x);p = mean(x,1);x = x - repmat(p,1,m);%%================================================================%% Step 1a: Implement PCA to obtain xRot% Implement PCA to obtain xRot, the matrix in which the data is expressed% with respect to the eigenbasis of sigma, which is the matrix U. xRot = zeros(size(x)); % 新基下的数据sigma =(1.0/m)*x*x';[u s v] = svd(sigma);XRot = u'*x; %%================================================================%% Step 1b: Check your implementation of PCA% 新基U下的数据的协方差矩阵是对角阵,只在主对角线上不为0% Write code to compute the covariance matrix, covar.% When visualised as an image, you should see a straight line across the% diagonal (non-zero entries) against a blue background (zero entries). % -------------------- YOUR CODE HERE --------------------covar = zeros(size(x, 1)); % You need to compute thiscovar = (1./m)*xRot*xRot'; %新基下数据的均值仍然为0,直接计算covariance % Visualise the covariance matrix. You should see a line across the% diagonal against a blue background.figure('name','Visualisation of covariance matrix');imagesc(covar); %%================================================================%% Step 2: Find k, the number of components to retain% Write code to determine k, the number of components to retain in order% to retain at least 99% of the variance.% 保留99%的方差比 % -------------------- YOUR CODE HERE --------------------k = 0; % Set k accordinglyfor i = i,n:lambd = diag(s)%对角线元素组成的列向量% 通过循环找到99%的方差百分比的k值for k = 1:n if sum(lambd(1:k))/sum(lambd)<0.99 continue;end%下面是另一种k的求法%其中cumsum(ss)求出的是一个累积向量,也就是说ss向量值的累加值%并且(cumsum(ss)/sum(ss))<=0.99是一个向量,值为0或者1的向量,为1表示满足那个条件%k = length(ss((cumsum(ss)/sum(ss))<=0.99)); %%================================================================%% Step 3: Implement PCA with dimension reduction% Now that you have found k, you can reduce the dimension of the data by% discarding the remaining dimensions. In this way, you can represent the% data in k dimensions instead of the original 144, which will save you% computational time when running learning algorithms on the reduced% representation.%% Following the dimension reduction, invert the PCA transformation to produce% the matrix xHat, the dimension-reduced data with respect to the original basis.% Visualise the data and compare it to the raw data. You will observe that% there is little loss due to throwing away the principal components that% correspond to dimensions with low variation. % -------------------- YOUR CODE HERE --------------------xHat = zeros(size(x)); % You need to compute this%把x映射到U的前k个基上 u(:,1:k)'*x作为Xrot',Xrot'为k*m维的%补全整个Xrot'中k到n维的元素为0,然后左乘U变回到原来的基下得到Xhat% 首先为了降维做一个基变换,降维后要还原到原来的坐标系下,还原后为%对应的降维后的原始数据 xHat = u*[u(:,1:k)'*x;zeros(n-k,m)]; % Visualise the data, and compare it to the raw data% You should observe that the raw and processed data are of comparable quality.% For comparison, you may wish to generate a PCA reduced image which% retains only 90% of the variance. figure('name',['PCA processed images ',sprintf('(%d / %d dimensions)', k, size(x, 1)),'']);display_network(xHat(:,randsel));figure('name','Raw images');display_network(x(:,randsel)); %%================================================================%% Step 4a: Implement PCA with whitening and regularisation% Implement PCA with whitening and regularisation to produce the matrix% xPCAWhite. epsilon = 0.1;xPCAWhite = zeros(size(x)); % 白化处理% xRot = u' * x 为白化后的数据xPCAWhite = diag(1./sqrt(diag(s) + epsilon))* u' * x; figure('name','PCA whitened images'); display_network(xPCAWhite(:,randsel));%%================================================================ %% Step 4b: Check your implementation of PCA whitening % Check your implementation of PCA whitening with and without regularisation.% PCA whitening without regularisation results a covariance matrix % that is equal to the identity matrix. PCA whitening with regularisation % results in a covariance matrix with diagonal entries starting close to % 1 and gradually becoming smaller. We will verify these properties here. % Write code to compute the covariance matrix, covar. % Without regularisation (set epsilon to 0 or close to 0), % when visualised as an image, you should see a red line across the % diagonal (one entries) against a blue background (zero entries). % With regularisation, you should see a red line that slowly turns % blue across the diagonal, corresponding to the one entries slowly % becoming smaller. % -------------------- YOUR CODE HERE -------------------- % Visualise the covariance matrix. You should see a red line across the % diagonal against a blue background. figure('name','Visualisation of covariance matrix'); imagesc(covar); %%================================================================ %% Step 5: Implement ZCA whitening % Now implement ZCA whitening to produce the matrix xZCAWhite. % Visualise the data and compare it to the raw data. You should observe % that whitening results in, among other things, enhanced edges. xZCAWhite = zeros(size(x)); % ZCA处理 xZCAWhite = u*xPCAWhite; % Visualise the data, and compare it to the raw data. % You should observe that the whitened images have enhanced edges. figure('name','ZCA whitened images'); display_network(xZCAWhite(:,randsel)); figure('name','Raw images'); display_network(x(:,randsel));
参考:
UFLDL